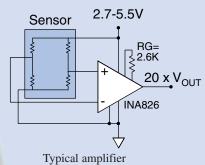

AA and AB-Series Analog Sensors



Versatile AA and AB-Series analog GMR sensors are ideal for a wide range of magnetic sensing, including industrial and automotive position, speed, and current sensing. Their Wheatstone bridge configurations inherently compensate for temperature and power supply variations. The devices are available in SOIC8 and MSOP8 packages, as well as 2.5 mm x 2.5 mm TDFN6, and 1.1 mm x 1.1 mm ULLGA4 leadless packages.

AA-Series sensors are magnetometers, sensitive in the plane of the device. The output is omnipolar, providing same output for magnetic fields of either polarity.

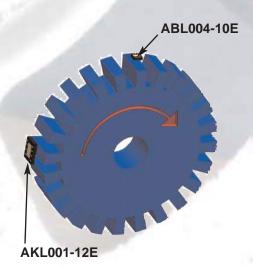
AB-Series sensors are differential devices, or gradiometers, with the bipolar linear output characteristics of a differential sensor.

H-subtype magnetometers and gradiometers offer extremely high sensitivity for low-field applications. L-subtype magnetometers use low-hysteresis GMR materials, making them ideal for low fields. The K-subtype is a kilooersted-range high-field magnetometer.

Part	Saturation	Linear (C	Range (e)	Typical Sensitivity	Typical		
Number	(Oe)	Min.	Max.	(mV/V-Oe)	Resistance	Feature	Package
AAH002-02	6	0.6	3	15	2 ΚΩ	Ultra-high sensitivity	SOIC8
AAL002-02	15	1.5	10.5	3.5	5 ΚΩ	Low hysteresis	SOIC8
AAL004-10	15	1.5	10.5	3.5	2.2 ΚΩ	Low hysteresis; small	TDFN6
AA002-02	15	1.5	10.5	3.5	5 ΚΩ		SOIC8
AA003-02	20	2	14	2.6	5 ΚΩ		SOIC8
AA004-00	50	5	35	1	5 ΚΩ		MSOP8
AA004-02	50	5	35	1	5 ΚΩ		SOIC8
AA005-02	100	10	70	0.5	5 ΚΩ		SOIC8
AA006-00	50	5	35	1	30 ΚΩ	High Resistance/	MSOP8
AA006-02	50	5	35	1	30 KΩ	low power	SOIC8
AA007-00	500	50	450	0.1	5 ΚΩ	High field	MSOP8
AAK001-14	4000	400	2500	0.0033	3.5 ΚΩ	Very high field; small	ULLGA6

Magnetometer selection guide

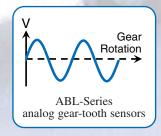
NEW! High-Field Sensors

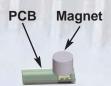

			Linear	Range	Element		
ĺ,	Part	Saturation	(Oe)		Spacing	Typical	
84	Number	(Oe)	Min.	Max.	(mm)	Resistance	Package
Ž,	AB001-02	250	20	200	0.5	2.5 ΚΩ	SOIC8
'n,	AB001-00	250	20	200	0.5	2.5 ΚΩ	MSOP8
	ABH001-00	70	5	40	0.5	1.2 ΚΩ	MSOP8

Gradiometer selection guide

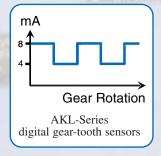
Gear-Tooth Sensors

Small and Robust


ABL and AKL-Series are versatile, wide airgap gear-tooth sensors. The sensors are used with ferromagnetic gears and bias magnets, or with magnetic encoders.


ABL-Series analog sensors have differential sensor elements that provide sinusoidal outputs. Three standard spacings are available for use with various gear pitches. Single- or double-bridge configurations are available. Double bridges generate sine and cosine outputs to provide direction information.

AKL-Series sensors are digital parts configured as two-wire devices where the supply current indicates a passing tooth. Three AKL-Series parts are available: the AKL001-12 is designed for pitches of 2.5 to 6 mm, the AKL002-12 for 1 to 2.5 mm, and the AKL003-12 for 0.6 to 1.5 mm pitches.


Features:

- · Large analog peak-to-peak signal
- Immune to airgap variations
- Up to 150°C
- As small as 2.5 mm x 2.5 mm

	G. I	Element	
Part	Single or	Spacing	
Number	Dual Bridge	(mm)	Package
ABL004-00	Single	1	MSOP8
ABL005-00	Single	0.5	MSOP8
ABL006-00	Single	0.3	MSOP8
ABL014-00	Dual	1	MSOP8
ABL015-00	Dual	0.5	MSOP8
ABL016-00	Dual	0.3	MSOP8
ABL004-10	Single	1	TDFN6
ABL005-10	Single	0.5	TDFN6
ABL006-10	Single	0.3	TDFN6
ABL014-10	Dual	1	TDFN6
ABL015-10	Dual	0.5	TDFN6
ABL016-10	Dual	0.3	TDFN6
			TDFN6

		Element	
Part	Single or	Spacing	
Number	Dual Bridge	(mm)	Package
AKL001-12	Single	1	TDFN8
AKL002-12	Single	0.5	TDFN8
AKL003-12	Single	0.3	TDFN8

ABL-Series selection guide

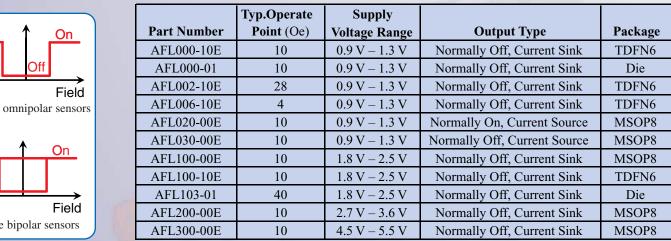
AKL-Series selection guide

GMR Switch Digital Sensors

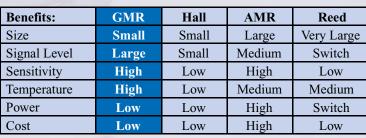
Sensitive and Precise

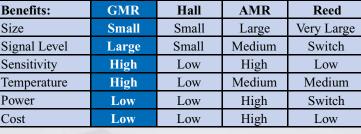
Nanopower Digital Sensors Ultraminiature; Ultralow Power

GMR Switch Precision Digital Sensors provide more precise operate points than Hall-effect or other conventional sensors. Magnetic operate points range from 4 Oe, which are the world's most sensitive magnetic switches, to 80 Oe.


AD-Series digital sensors are available with a variety of switch points and output configurations, and come in TDFN and MSOP packages. The parts have a wide 4.5 to 30 volt supply range.

Standard AD-Series sensors are omnipolar, so a field of either polarity switches the sensor ON, and the sensor turns OFF when the field is removed. However the unique ADV001 sensor is bipolar (south field ON, north field OFF).


AFL-Series sensors have supply voltages ranging from 0.9 to 5.5 volts for low-voltage and batterypowered applications.

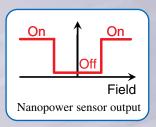

Part	Typ. Operate	Supply	Typ. Supply	Output	
Number	Point (Oe)	Voltage Range	Current (mA)	Туре	Package
AD004-00	20	4.5 V - 30 V	3.5	Sink	MSOP8
AD005-00	40	4.5 V - 30 V	3.5	Sink	MSOP8
AD006-00	80	4.5 V - 30 V	3.5	Sink	MSOP8
AD021-00	20	4.5 V - 30 V	3.5	Sink	MSOP8
AD022-00	40	4.5 V - 30 V	3.5	Sink	MSOP8
AD024-00	28	4.5 V - 30 V	3.5	Sink	MSOP8
AD024-10	28	4.5 V - 30 V	3.5	Sink	TDFN6
AD621-00	20	4.5 V - 30 V	3.5	Sink+Source	MSOP8
AD824-00	28	4.5 V - 30 V	3.5	2 Sinks+SCP	MSOP8
ADH025-00	11	4.5 V - 30 V	3.5	Sink	MSOP8
ADV001-00	±4	4.5 V - 30 V	3.5	Bipolar; Sink	MSOP8

Popular AD-Series digital sensors

AFL-Series digital sensor selection guide

Variation voltage temperature

Popular digital sensor applications:


- Cylinder position sensors
- Proximity sensors
- End-of-travel sensors

1.1 mm ULLGA packages fit on the head of a pin.

Small enough to fit on the head of a pin and low enough power to run indefinitely on a button cell, NVE Nanopower Magnetic Switches provide the ultimate in miniaturization and low power. Internally duty-cycled versions reduce power consumption to nanowatts. The sensors are available with a variety of operate points and come in tiny 1.1 mm x 1.1 mm ULLGA packages.

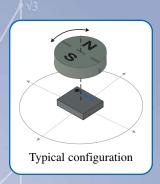
ADL-Series sensors have a 2.4 to 3.6 volt supply range; the AHL-Series uses 0.9 to 2.4 volts.

Part Number	Typ. Operate Point (Oe)	Supply Voltage Range	Typ. Supply Current (μA)	Typ. Update Frequency	Package
ADL021-14E	20	2.4 V – 3.6 V	0.08	55Hz	ULLGA
ADL022-14E	40	2.4 V – 3.6 V	0.08	55Hz	ULLGA
ADL024-14E	28	2.4 V – 3.6 V	0.08	55Hz	ULLGA
ADL121-14E	20	2.4 V – 3.6 V	0.03	30Hz	ULLGA
ADL122-14E	40	2.4 V – 3.6 V	0.03	30Hz	ULLGA
ADL124-14E	28	2.4 V – 3.6 V	0.03	30Hz	ULLGA
ADL921-14E	20	2.4 V - 3.6 V	35	Continuous	ULLGA
ADL922-14E	40	2.4 V - 3.6 V	35	Continuous	ULLGA
ADL924-14E	28	2.4 V - 3.6 V	35	Continuous	ULLGA
AHL021-14E	20	0.9 V - 2.4 V	0.095	110Hz	ULLGA
AHL024-14E	28	0.9 V - 2.4V	0.095	110Hz	ULLGA
AHL025-14E	10	0.9 V - 2.4 V	0.095	110Hz	ULLGA
AHL921-14E	20	0.9 V – 2.4V	35	Continuous	ULLGA
AHL924-14E	28	0.9 V – 2.4V	35	Continuous	ULLGA
AHL925-14E	10	0.9 V – 2.4V	35	Continuous	ULLGA

Nanopower sensor selection guide

On		Off	On
Standard	omn	ipola	Field r sensors
Ι.			On
Off			

Actual Size					
tput Type	Package				
Off, Current Sink	TDFN6				
Off, Current Sink	Die				
Off, Current Sink	TDFN6				
Off, Current Sink	TDFN6				
n, Current Source	MSOP8				
off, Current Source	MSOP8				
Off, Current Sink	MSOP8				
Off, Current Sink	TDFN6	-			
Off, Current Sink	Die				
Off Command Cinla	MCODO				


GMR

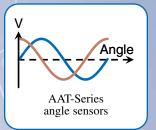
Hall

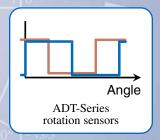
Angle and Rotation Sensors Small, Accurate, and Ultralow Power

AAT and ADT-Series noncontact angle and rotation sensors are based on spintronic Tunneling Magnetoresistance (TMR) elements for small size, large signals, and low power. An external magnet provides a saturating magnetic field in the plane of the sensor. The sensors work with magnetic fields from 15 to 200 Oe. Parts are packaged in NVE's 2.5 x 2.5 x 0.8 mm TDFN6 package.

AAT-Series angle sensors provide sine and cosine signals defining the angle of rotation. Outputs are proportional to the supply voltage and peak-to-peak output voltages are much larger than conventional sensors. AAT00x sensors consist of two half-bridges, while AAT10x sensors have two full bridges with differential outputs. Available bridge resistances range from the AAT009, with a typical device resistance of 6 megohms for ultralow power, to the AAT003 with a 40 kilohm typical device resistance (20 kilohm output impedances) for direct interface to simple microcontrollers.

ADT-Series rotation sensors have two digital, binary outputs. The outputs are 90 degrees out of phase to provide directional information. The ADT001 is high hysteresis for noise immunity in applications such as speed sensing; the ADT002 is low hysteresis to provide accurate, absolute rotational quadrant information.


Key features of AAT- and ADT-Series sensors are:


- Extremely low power
- Wide airgap tolerance
- 0.5° repeatability
- Wide supply range
- -40°C to +125°C operating range
- Ultraminiature TDFN6 package

Popular applications include:

- Rotational position sensors
- Rotational speed sensors
- Water meters

Part		Typ. Output	Required	Typ. Device	
Number	Configuration	(ea. output; p-p)	Field	Resistance	Package
AAT001-10E	Half-bridge	200 mV/V	30 Oe	$1.25~\mathrm{M}\Omega$	TDFN6
AAT003-10E	Half-bridge	200 mV/V	30 Oe	40 K Ω	TDFN6
AAT006-10E	Half-bridge	200 mV/V	15 Oe	1.5 ΜΩ	TDFN6
AAT009-10E	Half-bridge	200 mV/V	30 Oe	$6\mathrm{M}\Omega$	TDFN6
AAT101-10E	Full-bridge	400 mV/V	30 Oe	625 K Ω	TDFN6

AAT-Series angle sensor selection guide

Part Number	Max. Error (const. field)	Typ. Hysteresis	Typ. Supply Current	Package
ADT001-10E	0.5°	20°	2.5 μΑ	TDFN6
ADT002-10E	0.5°	4°	2.5 μΑ	TDFN6

	Output		
Angle	Sin	Cos	
0°-90°	Н	Н	
90°-180°	Н	L	
180°-270°	L	L	
270°-360°	L	Н	

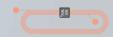
ADT-Series rotation sensor truth table

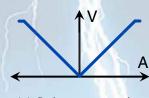
ADT-Series rotation sensor selection guide

Current Sensors Convenient Noncontact Current Sensing

AA-Series Analog Sensors (see page 2 of this catalog) are often used to measure the current over a circuit board trace, particularly for overcurrent protection where extreme accuracy is not required. The sensor measures the current by detecting the magnetic field generated by the current through the trace.

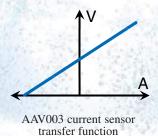
The AAL024 is ideal for current sensing because its cross-axis sensitivity provides sensitivity to a current trace directly under the part, and its low hysteresis provides repeatability. The AA003-02 is also popular for this application, and other AA-Series sensors can be used depending on required sensitivity and hysteresis.


Typical configurations are shown below:


0.09" (2.3 mm) trace (0 – 10 A with AA003 sensor)

(0-5 A with AAL024 sensor)

5 turns of 0.0055" (0.14 mm) trace (0 - 1) A with AAL024 sensor)



AA-Series current sensing over a trace transfer function

NVE also offers the AAV003 dedicated current sensor with an on-chip, low impedance current-sensing strap and a high-sensitivity bridge output with a -80 to +80 milliamp AC or DC measurement range. The part is packaged in a 2.5 mm x 2.5 mm TDFN6 package.

The AAV003 80 mA current sensor

Limited Warranty and Liability

Information in this document is believed to be accurate and reliable. However, NVE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including, without limitation, lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Right to Make Changes

NVE reserves the right to make changes to information published in this document including, without limitation, specifications and product descriptions at any time and without notice. This document supersedes and replaces all information supplied prior to its publication.

Use in Life-Critical or Safety-Critical Applications

Unless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and such inclusion or use is at the customer's own risk. Should the customer use NVE products for such application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless against all claims and damages.

Applications

Applications described in this document are illustrative only. NVE makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NVE products, and NVE accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NVE product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NVE does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customers. The customer is responsible for all necessary testing for the customer's applications and products using NVE products in order to avoid a default of the applications and the products or of the application or use by customer's third party customers. NVE accepts no liability in this respect.

Terms and Conditions of Sale

In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NVE hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NVE products by customer.

No Offer to Sell or License

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export Control

This document as well as the items described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Automotive Qualified Products

Unless the datasheet expressly states that a specific NVE product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NVE accepts no liability for inclusion or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NVE's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NVE's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NVE for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NVE's standard warranty and NVE's product specifications.

An ISO 9001 Certified Company

NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA (800) GMR-7141 www.nve.com sensor-info@nve.com

NVE sensors facilitate the Internet of Things with miniaturization, high sensitivity, low power, and simple interfaces.